If your integration uses local communications, you need to protect your integration against man-in-the-middle attacks, eavesdropping, and tampering.
To protect the communications between your POS app and the terminal, you:
- Validate the terminal certificate. This confirms that your POS app is communicating directly with an Adyen-supplied payment terminal, and not an impostor.
- Encrypt communications. This prevents intruders from reading the messages transmitted between the POS app and the terminal.
Requirements
- Make sure that you have:
Validate the terminal certificate
Every time your POS app connects to the terminal, you have to check the certificate on the terminal against Adyen's root certificate.
-
Verify that the certificate on the terminal is signed by the trusted root certificate that you installed. This step automatically includes checking of the intermediate certificate provided by the terminal at the start of the connection.
You will see a Common Name mismatch error during verification. This is normal, and happens because the certificate's Common Name does not resolve in the DNS.
-
Validate the Common Name. The Common Name is in one of the following formats:
-
Test terminal Common Name formats:
- legacy-terminal-certificate.test.terminal.adyen.com
- [POIID].test.terminal.adyen.com
[POIID] = [Terminal model]-[Serial number]
For example, P400Plus-123456789.test.terminal.adyen.com
-
Live terminal Common Name formats:
- legacy-terminal-certificate.live.terminal.adyen.com
- [POIID].live.terminal.adyen.com
[POIID] = [Terminal model]-[Serial number]
For example, P400Plus-123456789.live.terminal.adyen.com
Depending on the number of terminals you are integrating, you may want to use regular expressions in your code to validate the Common Name.
-
If the certificate on the connected terminal passes verification, your POS app is connected to an Adyen-supplied payment terminal.
Encrypt communications
To prevent others from being able to read requests and responses sent between your POS app and the payment terminal, you have to:
- Encrypt Terminal API messages before sending.
- Decrypt and validate Terminal API messages that you receive.
In the next sections, we use PHP code fragments to explain encryption and decryption step by step. If you want to copy code to your project, the section Full code samples has the complete code in several languages, as well as links to GitHub libraries that include this code.
Encrypt Terminal API messages
To encrypt Terminal API messages, proceed as follows:
- Derive key material by running an HMAC-based key derivation function on the shared key.
- Encrypt the message using the derived key material.
- Calculate the HMAC signature for the message, using the derived key material.
- Create a security trailer that contains the HMAC signature and identifies the shared key that was used for the encryption and the HMAC signature.
- Compose a new message containing the encrypted message as a Base64-encoded blob and the security trailer.
The result is a new message ready for sending.
Derive key material
To encrypt and decrypt messages, you need key material consisting of an HMAC key algorithm, a cipher key, and an initialization vector to initialize the encryption and decryption algorithms.
This key material is derived from the shared key passphrase
and only changes when the shared key changes. This means you do not need to re-derive key material for each message. However, the derived key material is secret, so if you do not derive key material with every message you need to store the key material securely in your system. Also, you need to add a function to your code to look up the key material.
To derive key material:
-
Apply the key derivation function PBKDF2-HMAC-SHA1 to the
passphrase
using the following parameters:Parameter Value Salt AdyenNexoV1Salt Salt length 15 Rounds 4000 Key length 80 Expand viewCopy link to code blockCopy codefunction NexoDeriveKeymaterial($passphrase) { $outlen = 80; $salt = "AdyenNexoV1Salt"; $rounds = 4000; $bytes = openssl_pbkdf2($passphrase, $salt, $outlen, $rounds, "sha1"); $hmac_key = substr($bytes, 0, 32); $cipher_key = substr($bytes, 32, 32); $iv = substr($bytes, 64, 16); return array('hmac_key' => $hmac_key, 'cipher_key' => $cipher_key, 'iv' => $iv); } This returns a three-element array containing the 32-byte
hmac_key
, the 32-bytecipher_key
and the 16-byte initialization vectoriv
.
Encrypt the message
-
Generate a nonce of the same length as the
iv
(16 bytes).PHPExpand viewCopy link to code blockCopy codefunction NexoDrawNonce() { return openssl_random_pseudo_bytes(16); } -
Add an XOR helper function. You will use this function later with the nonce and the
iv
from the derived key material as input, to calculate the initialization vector for the encryption and decryption algorithms.PHPExpand viewCopy link to code blockCopy codefunction XorBytes($a, $b) { $r = $a; for ($i = 0; $i < 16; $i++) { $r[$i] = $r[$i] ^ $b[$i]; } return $r; } -
Encrypt the message with AES265 in CBC mode using the full original message, the derived key material, and the nonce as input.
PHPExpand viewCopy link to code blockCopy codefunction NexoEncrypt($message, $keymaterial, $nonce) { $realiv = XorBytes($keymaterial['iv'], $nonce); return openssl_encrypt($message, "AES-256-CBC", $keymaterial['cipher_key'], OPENSSL_RAW_DATA, $realiv); }
Calculate the signature
-
Calculate the HMAC signature using the full original message and the
hmac_key
from the derived key material as input.PHPExpand viewCopy link to code blockCopy codefunction NexoHMAC($message, $keymaterial) { return hash_hmac("sha256", $message, $keymaterial['hmac_key'], true); }
Create the security trailer
-
Create a security trailer containing the version number and identifier of the shared secret, the nonce, and the HMAC signature.
PHPExpand viewCopy link to code blockCopy codefunction NexoTrailer($keyid, $keyversion, $nonce, $hmac) { return array('KeyVersion' => $keyversion, 'KeyIdentifier' => $keyid, 'Hmac' => base64_encode($hmac), 'Nonce' => base64_encode($nonce), 'AdyenCryptoVersion' => 1); }
Compose the new message
-
Create a new message that consists of:
- The same body key as the original message:
SaleToPOIRequest
orSaleToPOIResonse
. - The same
MessageHeader
as the original message. - A Base64-encoded blob with the encrypted original message.
- The security trailer.
PHPExpand viewCopy link to code blockCopy codefunction NexoSender($message, $keyid, $keyversion, $keymaterial) { $jsonin = json_decode($message, true); $isrequest = isset($jsonin['SaleToPOIRequest']); $bodykey = $isrequest ? 'SaleToPOIRequest' : 'SaleToPOIResponse'; $body = $jsonin[$bodykey]; $header = $body['MessageHeader']; // Encrypt the original message and compute its hmac signature $nonce = NexoDrawNonce(); $nexoblob = NexoEncrypt($message, $keymaterial, $nonce); $hmac = NexoHMAC($message, $keymaterial); $trailer = NexoTrailer($keyid, $keyversion, $nonce, $hmac); // The result has three parts: header, blob, and trailer $result = array('MessageHeader' => $header, 'NexoBlob' => base64_encode($nexoblob), 'SecurityTrailer' => $trailer); return json_encode(array($bodykey => $result), JSON_PRETTY_PRINT); } The result is the new message, ready for sending. Here is an example:
{ "SaleToPOIRequest":{ "MessageHeader":{ "MessageClass":"Service", "ProtocolVersion":"3.0", "ServiceID":"6158", "MessageCategory":"Abort", "SaleID":"POSSystemID12345", "MessageType":"Request", "POIID":"M400-260193322" }, "NexoBlob":"ae8b41wcH9ZH18CRTHSPXi4FdN5Hd2vOQ9ZTKS+GsHvXFqyrAPtVZtmlyI5fWzxpzLMYOyZIAbaSFuasmGi2WcvFO5DBIWvstaQyIfDgcs9oVCuSWvgLXqnCocV8juZNjYGWllY1t0HKuym0I1lCeQRPehzyNbQn5aUp7fr6AuUTgLC+bAZWh/DqnxCCW5wcyNq9QFC8H+1Gm9R4weJH8zEBMTxldh1BDwp/5Xabz5nkfvDYranT463PTw9czge5VcgE7sGaBLaMWzYU9HI9QVlShceasOZo18rohNRdeaJVuJ1JJme2ZY1ZWav44rXi77NN3QuC5mbj0bUCKFOhTCOVcxKdNlIlmF0tAmCcmNiPwmSLL6kmygZNcgQ7zKjWVJsFhQ+2I4hOWCE4ZbJ6jAxyGbLnCpSjzhfFpLBQvGRuFiaCNMNbAUh2iL9Ep6jMlf5/SqpYXhji+8hQF8jXMF9i6oYJ1G/WUQRSajVklpHk7KoTpH2JjtuG7jZmPxzVGj1/vKPSaT90WiVPOay1vMLKb6V3Tc+DpjG0Y2sNj+bc6PvqnXmUPPlyiA+I65XkawdXR3qcsm2AFNLRTLZR4Q0og5FXXpZxOBFtfmDNFQ+Ygtb/JqsB960HaWhQkAyBxZKJ0nfWBeriiF4t1c6ppgejqmIqxAauOmAJjng+5hcA3x2kSFl9MT6kGx21Kt04ijAFX7OTyfBggJFEhnphHQ==", "SecurityTrailer":{ "KeyVersion":0, "KeyIdentifier":"mykey", "Hmac":"h6ehPJOASK4NXGESERmXo5mP9YFxpox7VoAFGIb9s8Y=", "Nonce":"BoBZRF2QmDlNnmeo1QYeZQ==", "AdyenCryptoVersion":1 } } } - The same body key as the original message:
Decrypt Terminal API messages
Decrypting messages requires the following steps:
- Decompose the received message.
- Identify the shared key and use that to derive key material.
- Decrypt the original message using the derived key material
- Validate the message by checking that the HMAC signature and
MessageHeader
of the received message are the same as those of the decrypted original message.
The result is the decrypted original message ready for processing.
-
Create some functions you'll need later on in the
NexoReceiver
function:- A function to look up the
passphrase
.
PHPExpand viewCopy link to code blockCopy codefunction NexoLookupKeybyIdAndVersion($keyid, $keyversion) { // This function should do a lookup based on key id and version. // But for demonstration purposes, we just return a given test passphrase. return NexoDeriveKeyMaterial("mysupersecretpassphrase"); } - A function to decrypt the message with AES265 in CBC mode. This function reuses the
XorBytes
function from the encryption steps to set the initialization vector for the decryption algorithm.
PHPExpand viewCopy link to code blockCopy codefunction NexoDecrypt($message, $keymaterial, $nonce) { $realiv = XorBytes($keymaterial['iv'], $nonce); return openssl_decrypt($message, "AES-256-CBC", $keymaterial['cipher_key'], OPENSSL_RAW_DATA, $realiv); } - A function to look up the
Decompose the message
-
Parse the received message and decompose it into three parts::
- The
MessageHeader
. - The blob of the encrypted original message.
- The security trailer.
PHPExpand viewCopy link to code blockCopy codefunction NexoReceiver($message) { $jsonin = json_decode($message, true); $isrequest = isset($jsonin['SaleToPOIRequest']); $bodykey = $isrequest ? 'SaleToPOIRequest' : 'SaleToPOIResponse'; $body = $jsonin[$bodykey]; $header = $body['MessageHeader']; $blob = $body['NexoBlob']; $trailer = $body['SecurityTrailer']; // NexoReceiver function continues in the next steps - The
Derive key material
-
Look up the
passphrase
of the shared key based on the version number and identifier in the security trailer, and Base64-decode the HMAC signature and the nonce from the security trailer.PHPExpand viewCopy link to code blockCopy codeif ($trailer['AdyenCryptoVersion'] != 1) { return null; } $keymaterial = NexoLookupKeybyIdAndVersion($trailer['KeyIdentifier'], $trailer['KeyVersion']); $nonce = base64_decode($trailer['Nonce']); $hmac = base64_decode($trailer['Hmac']); -
Reuse the
NexoDeriveKeymaterial
function to derive the key material based on thepassphrase
.
Decrypt the original message
-
Base64-decode the blob and decrypt the original message using the
cipher_key
and the nonce as input, and reusing theXorBytes
function from the encryption steps to set the initialization vector for the decryption algorithm.PHPExpand viewCopy link to code blockCopy code$nexoblob = base64_decode($body['NexoBlob']); $decrypted = NexoDecrypt($nexoblob, $keymaterial, $nonce);
Validate the message
-
Validate the HMAC signature: Base64-decode the HMAC from the received message, reuse the
NexoHMAC
function to calculate the HMAC of the decrypted message, and compare the two.PHPExpand viewCopy link to code blockCopy code$computed_hmac = NexoHMAC($decrypted, $keymaterial); if ($computed_hmac != $hmac) { return null; } -
Verify that the plaintext
MessageHeader
matches theMessageHeader
in the decrypted message, and then return the decrypted message.PHPExpand viewCopy link to code blockCopy code$decrypted_json = json_decode($decrypted, true); if ($decrypted_json[$bodykey]['MessageHeader'] !== $header) { return null; } return $decrypted; } // end of the NexoReceiver function If the validation succeeds, the result is the decrypted message, ready for processing.
Full encryption code samples
The next examples show the full code for encrypting and decrypting messages. This code is also available in the C# library and Java library on our GitHub.
import java.io.*; import java.security.*; import java.security.spec.*; import java.text.ParseException; import java.util.Base64; import java.util.Random; import javax.crypto.*; import javax.crypto.spec.IvParameterSpec; import javax.crypto.spec.PBEKeySpec; import javax.crypto.spec.SecretKeySpec; import javax.json.*; public class NexoCrypto { public static final int NEXO_HMAC_KEY_LENGTH = 32; public static final int NEXO_CIPHER_KEY_LENGTH = 32; public static final int NEXO_IV_LENGTH = 16; /** * Where to look for pre-derived key files */ private String keyDirectory; /** * The key material to use when sending */ private String keyIdentifier; private long keyVersion; private NexoDerivedKeys derivedKeys; /** * A container for Nexo derived keys * * Nexo derived keys is a 80 byte struct containing key data. These 80 * bytes are derived from a passsphrase. */ public class NexoDerivedKeys { public byte hmac_key[]; public byte cipher_key[]; public byte iv[]; public NexoDerivedKeys() { hmac_key = new byte[NEXO_HMAC_KEY_LENGTH]; cipher_key = new byte[NEXO_CIPHER_KEY_LENGTH]; iv = new byte[NEXO_IV_LENGTH]; } /** * Read a key material file of 80 bytes, splitting it in the hmac_key, cipher_key and iv */ public void readKeyData(String keyId, long keyV) throws IOException { String filename = keyDirectory + '/' + keyId + "." + Long.toString(keyV) + ".key"; FileInputStream stream = null; try { stream = new FileInputStream(filename); stream.read(this.hmac_key); stream.read(this.cipher_key); stream.read(this.iv); } finally { if (stream != null) { try { stream.close(); } catch (Exception ignored) { } } } } }; /** * Use this constructor if you want to do both encryption and decryption */ public NexoCrypto(String dir, String keyID, long keyV) throws IOException { keyDirectory = dir; keyIdentifier = keyID; keyVersion = keyV; derivedKeys = new NexoDerivedKeys(); derivedKeys.readKeyData(keyIdentifier, keyVersion); } /** * Use this constructor if you want to decrypt-only NexoCrypto object */ public NexoCrypto(String dir) { keyDirectory = dir; } /** * Given a passphrase, compute 80 byte key of key material according to crypto.md */ public static byte[] deriveKeyMaterial(char[] passphrase) throws NoSuchAlgorithmException, InvalidKeySpecException { byte[] salt = "AdyenNexoV1Salt".getBytes(); int iterations = 4000; PBEKeySpec spec = new PBEKeySpec(passphrase, salt, iterations, (NEXO_HMAC_KEY_LENGTH + NEXO_CIPHER_KEY_LENGTH + NEXO_IV_LENGTH) * 8); SecretKeyFactory skf = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1"); byte[] keymaterial = skf.generateSecret(spec).getEncoded(); return keymaterial; } /** * Encrypt or decrypt data given an iv modifier and using the specified key * The actual iv is computed by taking the iv from the key material and xoring it with ivmod */ private byte[] crypt(byte[] bytes, NexoDerivedKeys dk, byte[] ivmod, int mode) throws NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException, InvalidKeyException, InvalidAlgorithmParameterException { Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding"); SecretKeySpec s = new SecretKeySpec(dk.cipher_key, "AES"); // xor dk.iv and the iv modifier byte[] actualIV = new byte[NEXO_IV_LENGTH]; for (int i = 0; i < NEXO_IV_LENGTH; i++) { actualIV[i] = (byte) (dk.iv[i] ^ ivmod[i]); } IvParameterSpec i = new IvParameterSpec(actualIV); cipher.init(mode, s, i); return cipher.doFinal(bytes); } /** * Compute an hmac using the hmac_key */ private byte[] hmac(byte[] bytes, NexoDerivedKeys dk) throws NoSuchAlgorithmException, InvalidKeyException { Mac mac = Mac.getInstance("HmacSHA256"); SecretKeySpec s = new SecretKeySpec(dk.hmac_key, "HmacSHA256"); mac.init(s); return mac.doFinal(bytes); } /** * Encrypt and compose a secured Nexo message * * This functions takes the original message, encrypts it and converts the encrypted form to Base64 and * names it NexoBlob. * After that, a new message is created with a copy of the header, the NexoBlob, and an added SecurityTrailer. * * @param in is the byte representation of the unprotected Nexo message * @returns a byte representation of the secured Nexo message */ public byte[] encrypt_and_hmac(byte in[]) throws InvalidKeyException, NoSuchAlgorithmException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException, InvalidAlgorithmParameterException { Base64.Encoder encb64 = Base64.getEncoder(); // parse the json and determine if it is a request or responce JsonReader jsonreader = Json.createReader(new ByteArrayInputStream(in)); JsonObject body = jsonreader.readObject(); boolean request = true; JsonObject saletopoirequest = body.getJsonObject("SaleToPOIRequest"); if (saletopoirequest == null) { request = false; saletopoirequest = body.getJsonObject("SaleToPOIResponse"); } // pick up the MessageHeader JsonObject messageheader = saletopoirequest.getJsonObject("MessageHeader"); // Generate a random iv nonce byte[] ivmod = new byte[NEXO_IV_LENGTH]; new Random().nextBytes(ivmod); // encrypt taking the original bytes as input byte[] encbytes = crypt(in, this.derivedKeys, ivmod, Cipher.ENCRYPT_MODE); // compute mac over cleartext bytes byte[] hmac = hmac(in, this.derivedKeys); // Construct the inner Json object containing a MessageHeader, a NexoBlob and a SecurityTrailer JsonObject msg = Json.createObjectBuilder() .add("MessageHeader", messageheader) .add("NexoBlob", new String(encb64.encode(encbytes))) .add("SecurityTrailer", Json.createObjectBuilder() .add("Hmac", new String(encb64.encode(hmac))) .add("KeyIdentifier", keyIdentifier) .add("KeyVersion", keyVersion) .add("AdyenCryptoVersion", 1) .add("Nonce", new String(encb64.encode(ivmod))) ).build(); // Wrap the inner message in a SaleToPOIRequest or SaleToPOIResponse object JsonObject total = Json.createObjectBuilder() .add(request ? "SaleToPOIRequest" : "SaleToPOIResponse" , msg) .build(); ByteArrayOutputStream stream = new ByteArrayOutputStream(); JsonWriter writer = Json.createWriter(stream); writer.writeObject(total); writer.close(); return stream.toByteArray(); } /** * A helper class to return a decrypted mesasage and the outer header from the * secured Nexo message */ public class BytesAndOuterHeader { public byte[] packet; public JsonObject outer_header; public BytesAndOuterHeader(byte[] packet, JsonObject outer_header) { this.packet = packet; this.outer_header = outer_header; } } /** * Validate and decrypt a secured Nexo message * @returns a BytesAndOuterHeader object or null on failure */ public BytesAndOuterHeader decrypt_and_validate_hmac(byte in[]) throws InvalidKeyException, NoSuchAlgorithmException, IOException, NoSuchPaddingException, IllegalBlockSizeException, BadPaddingException, InvalidAlgorithmParameterException { Base64.Decoder b64dec = Base64.getDecoder(); // Parse bytes and retrieve MessageHeader InputStream stream = new ByteArrayInputStream(in); JsonReader jsonreader = Json.createReader(stream); JsonObject total = jsonreader.readObject(); if (total == null) { throw new IOException("Faulty JSON"); } JsonObject saletopoirequest = total.getJsonObject("SaleToPOIRequest"); if (saletopoirequest == null) { saletopoirequest = total.getJsonObject("SaleToPOIResponse"); } if (saletopoirequest == null) { throw new IOException("No SaleToPOIRequest or SaleToPOIResponse"); } JsonObject messageheader = saletopoirequest.getJsonObject("MessageHeader"); if (messageheader == null) { throw new IOException("MessageHeader not found"); } // Get the encrypted actual message and base64 decode it JsonString payload = saletopoirequest.getJsonString("NexoBlob"); if (payload == null) { throw new IOException("NexoBlob not found"); } byte[] ciphertext = b64dec.decode(payload.getString()); // Get the SecurityTrailer and its values JsonObject jsonTrailer = saletopoirequest.getJsonObject("SecurityTrailer"); if (jsonTrailer == null) { throw new IOException("SecurityTrailer not found"); } JsonNumber version = jsonTrailer.getJsonNumber("AdyenCryptoVersion"); if (version == null || version.intValue() != 1) { throw new IOException("AdyenCryptoVersion version not found or not supported"); } JsonString nonce = jsonTrailer.getJsonString("Nonce"); if (nonce == null) { throw new IOException("Nonce not found"); } JsonString keyId = jsonTrailer.getJsonString("KeyIdentifier"); if (keyId == null) { throw new IOException("KeyIdentifier not found"); } JsonNumber kversion = jsonTrailer.getJsonNumber("KeyVersion"); if (kversion == null) { throw new IOException("KeyVersion not found"); } JsonString b64 = jsonTrailer.getJsonString("Hmac"); if (b64 == null) { throw new IOException("Hmac not found"); } // Read the key from disk NexoDerivedKeys dk = new NexoDerivedKeys(); dk.readKeyData(keyId.getString(), kversion.longValue()); // Decrypt the actual message with the base64 decoded ivmod as found in the securitytrailer byte[] ivmod = b64dec.decode(nonce.getString()); byte[] ret = crypt(ciphertext, dk, ivmod, Cipher.DECRYPT_MODE); // Base64 decode the received HMAC and compare it to a computed hmac // Use a timing safe compare, this is to mitigate a (theoretical) timing based attack byte[] receivedmac = b64dec.decode(b64.getString()); byte[] hmac = hmac(ret, dk); if (receivedmac.length != hmac.length) { throw new IOException("Validation failed"); } boolean equal = true; for (int i = 0; i < hmac.length; i++) { if (receivedmac[i] != hmac[i]) { equal = false; } } if (!equal) { throw new IOException("Validation failed"); } // Return decrypted message and outer header return new BytesAndOuterHeader(ret, messageheader); } /** * Compare an inner and outer MessageHeader * @param the inner MessageHeader * @param outer the outer MessageHeader * @return */ public boolean validateInnerAndOuterHeader(JsonObject inner, JsonObject outer) { if (inner == null || outer == null) { return false; } String[] fields = { "DeviceID", "MessageCategory", "MessageClass", "MessageType", "SaleID", "ServiceID", "POIID", "ProtocolVersion", }; for (String field : fields) { try { JsonString a = inner.getJsonString(field); JsonString b = outer.getJsonString(field); if (a == null && b == null) { continue; } if (a == null || !a.equals(b)) { return false; } } catch (ClassCastException ex) { return false; } } return true; } }
Troubleshooting
Crypto errors and SSL connection errors indicate a problem with the protection of the local communications.
Crypto errors
Example:
Exception: System.Net.WebException: The remote server returned an error: (401) Unauthorized.
The response body contains:
{ "errors":[ "Nexo Service: crypto error (9)" ], "ServiceID":"1234567890" }
Cause: Crypto errors are related to the shared key. After you set up the shared key in your Customer Area, the shared key values in your code must match the shared key values in the Customer Area.
If you are using a library, check the values for the relevant object:
- With the .NET library, check the
EncryptionCredentialDetails
object. - With the Java library, check the
SecurityKey
object. - With the Node library, check the
SecurityKey
object.
If you are using your own code:
- Check the key derivation function. This uses the passphrase of the shared key.
- Check the security trailer function. This uses the version and the identifier of the shared key.
Crypto error | Cause |
---|---|
crypto error (1) | There is a problem with parsing the request. This can be due to a syntax error. |
crypto error (2) | The version number of the shared key in your code is unknown. |
crypto error (3) | There is a problem with the message header of the request. |
crypto error (4) | There is a problem with the body of the request. |
crypto error (5) | There is a problem with the security trailer of the encrypted message. The trailer uses the version and identifier of the shared key. |
crypto error (6) | There is a problem with the passphrase of the shared key. |
crypto error (7) | The nonce is missing or incorrect. The nonce must have a length of 16 bytes. |
crypto error (8) | The HMAC key is missing or incorrect. The HMAC key must have a length of 32 bytes. |
crypto error (9) | The shared key details in your code do not match the shared key that is set up in your Customer Area. |
SSL connection error
Example:
Exception : System.Net.WebException: The SSL connection could not be established
Possible cause: Adyen's root certificate is not installed correctly.